Plug in hybrid vehicles: Insights on their potential to reduce CO₂ emissions in real-world operation Jaime Suarez, Alessandro Tansini, Jelica Pavlovic, Giorgos Fontaras European Commission, Joint Research Center WCTRS Workshop "Decarbonizing the Transport Sector through Innovative Technologies", 20/09/2021 ## Part I: PHEVs and the CO₂ gap context - CO₂ emissions in passenger cars - PHEVs description - Official certification procedures (WLTP) - Fuel Consumption Gap #### CO₂ emissions in Transport sector #### **World Clima Context** - Paris Agreement: Need to achieve >55% reduction of GHG by 2030 - Transportation is responsible for 24% of CO2 emissions - Passenger vehicles is the main source (45%) - The average Type-Approval CO₂ emissions of a vehicle in 2019 were 122.4 g/km, still higher than 95 g/km set as target for 2020. ("Tracking Transport 2020", IEA, May 2020), (EEA Data 2020) #### PHEVs: How do they work? Can operate in 2 modes: #### **Electric mode** - Uses <u>electric</u> engine - Propelled from a HV batt. - Recharge battery from e-grid - (Similar performance to EV) - ✓ Zero-carbon emissions - ✗ Low distance-range #### ICE mode - Uses <u>combustion</u> engine - Propelled from burning fuel - Conventional fuel stations - (Similar performance to full hybrid) - ★ High CO₂ emissions - √ Long distance-range #### WLTP speed cycles in PHEVs **Charge Sustaining** Starts from batt. depleted #### **Charge Depleting** **Starts from battery 100%** #### WLTP speed cycles in PHEVs #### **Charge Sustaining** # Charge sustaining (CS) 23.25 km 150 120 90 23.25 km 1000 10 Time (sec) #### **Charge Depleting** #### FC Gap between RW and TA - CO₂ emissions in ICE directly related to Fuel Consumption of hydrocarbon fuels. (More FC, more CO₂) - According to TA, a typical PHEV can reduce CO₂ to less than 1/3rd of conventional ICE vehicle (e.g. 4.1L/100km => 1L/100km) - There is a gap of ~40% between the official FC figures and actual fuel use for the whole vehicle fleet (FC gap) - The divergences for PHEVs can be even broader, up to 200% - The key point is the ratio CD / CS in real world use #### FC Gap between RW and TA What causes this gap? Possible causes: - Distances travelled different from predicted by UF-WLTP - 2. **Speed pattern in real life** different from WLTP cycle - 3. Assumption in WLTP of 100% initial battery charge - 4. Use of AC (and other **electrical consumers**) [Not addressed here...] # Part II: Performance of PHEVs in real-world - PHEVs used in this study - Analysis of trips and FC - Conclusions on nature of the Fuel Consumption Gap #### PHEVs used in this study #### Case 1 Mass: 1600 kg Max. Power. 77.2 kW /44.50 kW PWR = 0.05 [kW/kg] Fuel: Gasoline e-range (EAER): 49 km FC: **1.4 L/100km** (CO₂ 31 g/km) Year: 2021 #### Case 2 Mass: 1935 kg Max. Power: 97kw /69kw PWR = 0.05 [kW/kg] Fuel: Gasoline e-range (EAER). 49 km FC: **2.1 L/100km** (CO2 46 g/km) Year: 2021 #### **OBFCM** data from PHEVs Reg. EU2017/1151: **OBFCM** (on-board Fuel Consumption Monitoring) is mandatory in vehicles since year 2021 - ✓ Total distance travelled - ✓ Total fuel consumed - ✓ Total grid energy into the battery #### Real consumption vs. official values FC increases 46% and 79% with respect to official values #### Trips as function of Fuel Consumption Trips above e-range show FC > WLTP value But FC > WLTP can take place even at shorter distances! #### 1) Analysis of distances travelled Short trips for Case 1, Longer trips in Case 2 #### 1) Analysis of distances travelled (ii) - Excellent agreement between distance travelled per day of PHEV users and the general mobility fit (mostly conventional cars) - Very few trips > 100 km - Most of the trips < 50km #### 2) Analysis of average speeds Case 2 shows higher speeds than Case 1 #### 2) Analysis of average speeds (ii) Similar logarithmic fitting for conventional cars and PHEV drivers #### 3) Impact of a depleted battery From recent driving campaign on PHEV with e-range: 69km, FC: 0.9 L/100km Preliminary evidence shows a clear decreasing trend in FC with increasing initial battery charge #### 3) Impact of a depleted battery From recent driving campaign on PHEV with e-range: 69km, FC: 0.9 L/100km - Preliminary evidence shows a clear decreasing trend in FC with increasing initial battery charge - Selecting trips between [40km,60km] yields an even more clear (linear?) trend #### 3) Impact of a depleted battery (ii) Clear trend towards higher consumption in afternoon (depleted battery?) #### 3) Impact of a depleted battery (iii) Filter the trips according to the previous **distance driven** after battery charging For cases < 20 km, most of the FC is very low (Battery has been recently charged) For cases > 20 km, considerable number of high-FC events (Battery <u>partially</u> depleted). For > 50km most of events are above official WLTP data (Battery completely depleted) Case 1 #### Conclusions... - PHEVs are promising solutions for reducing CO₂ in road transport - But their performance in real-world (RW) is not optimal (FC, CO₂). - Gaps between RW and official TA values can reach up to 200%. - We analysed possible factors involved in this gap: - Utility Factor defined in WLTP seems to fit with use of PHEVs - Reasonable WLTP assumption of driving speeds - Assumption of 100% initial SOC is questionable. - Charging habits from the driver must be taken into account. FC increases linearly when SOC ≠ 100% (assumed in WLTP) #### ...and future work - Understand the impact of electric consumers (AC, heater,...) - Quantify differences between Summer / Winter consumption - Evaluate impact of specific driving styles - Employ OBFCM data available since 2021 from larger fleet of vehicles to improve statistics #### Keep in touch EU Science Hub: ec.europa.eu/jrc @EU_ScienceHub EU Science Hub – Joint Research Centre EU Science, Research and Innovation **EU Science Hub** ## Thank you © European Union 2021 Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders. Slide 4: Vehicle icons, source: www.flaticon.com #### **EU** countries